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Abstract. A quantum evolution model in 2 + 1 discrete spacetime, connected with a 3D
fundamental maR, is investigated. Mam is derived as a map providing a zero curvature of

a 2Dlinear lattice system called ‘the current system’. In a special case of the local Weyl algebra
for dynamical variables the map appears to be canonical and it corresponds to the known operator-
valuedr-matrix. The current system is a type of the linear problem for the 2 + 1 evolution model.

A generating function for the integrals of motion for the evolution is derived with the help of the
current system. Thus, the complete integrability in 3D is proved directly.

Introduction

In 3D integrable models the tetrahedron equation (TE) takes the place of the Yang—Baxter
equation (YBE) in two dimensions. Having obtained a solution of the TE, one may hope to
construct a 3D integrable model. In the case of a finite number of states one may construct the
usual layer-to-layer transfer matricEswith which the TE commutes [1-3]. Such finite state
models are usually interpreted as statistical mechanics models. In fact, only one such model
still exists, the Zamolodchikov—Bazhanov—-Baxter model [1, 3-5]. This uniqueness does not
mean that the 3D world has no interest.

When 3DR-matrices have infinitely many states, which is more usual in three dimensions,
it is natural to investigate transfer matrices with no hidden space. We denote such transfer
matrices asJ as opposed to the notation for usual transfer mafrixMatricesu commute
with the set ofT", but have no degrees of freedom when the st o fixed. Operator-valued
matricesU are usually interpreted as evolution operators for systems associated with in-states
of U, making the map from in-states to out-states. In the realm of 1 + 1 evolution models many
such models associated with proper quantization of discrete equations have been derived,
see [6, 7, 17] and references therein. Conventionally, models with infinitely many states are
regarded as field theory models.

In three dimensiong)-matrices, finite state as well as infinite state, geometrically appear
as the element of a cubic lattice between two nearest inclined planes. We do not draw the
graphical representation of a 3D here; we consider sections of the cubic lattice made by
the two, in- and out-, inclined planes mentioned. A 2D lattice appearing in such sections is
called the Kagora lattice and we consider it in detail below. Example&/efnatrices in three
dimensions for finite stat®-matrix as well as examples of their eigenstates may be found
in [8-10].

Here we derive our evolution model without considering any discrete 3D equation. Instead
we derive a canonical maR as an intertwining operator between two algebraic objects,
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associated with the geometries of two Yang—Baxter graphs. In some sense our approach
resembles the method of the local YBE proposed in [14—16] in which

L12(x) - L13(y) - L23(x) = L23(z) - L13(y") - L12(x"). (0.1)
The intertwining operator between the left- and right-hand sides of the equation,
Ri[x,y,z] =[x,y 2] (0.2)

obeys the zero-curvature condition in 3D (the TE) automatically, because of the uniqueness of
the solution

X' =x'(x,y,2) Y =Yz ,2) 7 =7(x,,2) (0.3)
of the local YBE. The key observation is that an intertwining functional operator, solving
the TE, can be obtained from any other decent definition of an equivalence of two Yang—
Baxter-type graphs [18, 28]. Here we formulate such a definition of the equivalence, that is
an equivalence of some linear system [19, 20]. The linearity of the basic system allows us to
derive a generating function for integrals of motion for the discrete evolution, governed by our
intertwining map. The model we investigate in the present paper is the quantum counterpart
of the functional evolution model considered briefly in [20].

This paper is organized as follows. In section 1 we formulate the linear system in general
and describe the intertwining map. The map will become the unique and canonical one when
we impose the local Weyl algebra conditions for the dynamical variables of the linear system.
Being canonical, the map may be realized in terms of quantum dilogarithmic functions [23, 24].
In section 2 we define the evolution. For that, the generating function for the integrals of
motion is a properly defined determinant of the operator-valued matrix of the coefficients of
the linear system. The determinant admits a combinatorial diagrammatic representation in
terms of walks around the torus, on which the Kagdattice is defined. In these terms each
integral of motion may be associated to a sum of the walks with a homotopy class fixed. As
an example, we consider the simplest case of the evolution on a thin strip for a special limit
of the intertwining operator. This corresponds to the quantum Liouville evolution. One can
calculate the integrals of motion for this case explicitly. Finally, we discuss a host of unsolved
problems and perspectives for further investigation. This paper is a journal version of the
manuscript [30], where many associated questions are discussed in detail.

1. Auxiliary linear problem

In this section we give some rules allowing one to assign an algebraic system to a graph. The
elements to which we assign something are vertices and sites. First, we give the most general
rules, which do not give an algebraic equivalence of equivalent graphs in general, due to a kind
of ‘gauge ambiguity’. As a special case we find rules which do not contain a gauge ambiguity,
and so a notion of algebraic equivalence can be introduced. Then we describe the map of the
dynamical variables given by the equivalence of 2-simplices.

First of all, we fix some notation for the geometrical objects we deal with. Consider a
graphG, formed byn straight intersecting lines. The elements of its cw-complex are the
vertices, the edges and the sité, consists onVy = 2“2 vertices Ny = “~2"=2 closed
inner sites andvi = 2n outer open sitesyy = n(n — 2) closed inner edges and; = 2n
outer edges. If two graphs, andG,, have the same outer structure, (&, can be obtained
from G, by an appropriate shift of the lines, then we a@J] and G, equivalent. To such
graphs we are going to associate an algebraic system, which gives an algebraic meaning to the
geometrical equivalence, providing an intertwining map from parametess tf parameters
of G),.
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Figure 1. The current vertex.

¢

e

Figure 2. The Yang-Baxter equivalenae ~ v.

1.1. Linear system: general approach
Choose as a game the following rules:

e Assign to each oriented vertéx an auxiliary ‘internal current. Suppose this current
produces four ‘site currents’ flowing from the vertex into four adjacent faces, and
proportional to the internal current with some coefficients, c, d, called the dynamical
variables, as is shown in figure 1. All these variabdeanda, .. ., d for different vertices
are independent for a while. We ask nothingapb, c, d, ¢ a priori, except for linearity
with respect tap and the right action of the coefficierdsb, c, d on ¢.

e Define the complete site current as an algebraic sum of the contributions of vertices
surrounding this site.

e For any closed site of a lattice let its complete current be zero. Such zero relations we
regard as the linear equations for the internal currents.

e For any graplG, the site currents assigned to outer (open) sites we call the ‘observable
currents’. Two equivalent graplds, andG;, must have the same observable currents—this
is the algebraic meaning of equivalence.

We clarify these rules with the example of the equivalend@pfAs was mentioned, this is
the usual Yang—Baxter equivalence graphically, schematigatys/, showninfigure 2. Here,
for brevity, we denote the left-hand configuration®f asA, and the right-hand configuration
asy. We assign to the verticd¥; of A the currentg; and dynamical variables;, b;, c;, d;

andto the verticer’. of v, the cUrrent&} and dynamical variablea?, b;., c’j , d’j . Six currents
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of outer sites are denoted as, . .., ¢,, and two zero-valued currents of closed sitegas
and¢, as shown in figure 2. Then, using the rules described above, we obtain the following
system of eight linear (with respect to the currents) relations:

¢pp=cr-Ppr+az-¢at+tbz-¢p3=0 (1.1)
$p=ci-¢py=Co-¢otd3-¢3
pe=ay-p,=ar-P1taz-¢P3 (1.2)

$Pa=b5-p5=d1-Pp1+by- ¢

¢ =by-prtag-¢3=Db1 ¢

pr=dy-@y+dy-dps=dz- ¢z (1.3)
g =a)-P)+ch Py =C3-¢3
Gy =0 - ¢y +d5- @) +ch- 93 =0. (1.4)

These give the currents and the dynamical variableafoAs ¢, = 0, equation (1.1), only
two currents are independent; let them¢@eand¢s. All the variables fory we try to restore
via the linear system: first, ugeg, ¢. andg, (1.2) to express a{zb}; substitutep} into relations
for ¢., ¢ ande, (1.3), then three homogeneous linear relations for two arbitsagnd ¢z
will appear, so six coefficients @f; and ¢z must vanish. Solving these six equations with
respect to the primed variables, we obtain

ra—1 _ A1 -1 I/l A1 -1

b2a21_A11-b3a31 asb, l_All-azb21
r =1 _ — — AN — -

dicy - = A5 - bad; d3by ™ = A5 - cad] (1.5)
;=1 A -1 -1 r =1 oA -1 -1

acy - = Az - axc, Cra, ~ = Az -Ci1a;

where three polynomials have arisen:
A1 =bgaztaib;t — cibyt +azbytdbt
Az =bgd3tcad,t — apdyt +cqdy thod;,t (1.6)
A3 = a202_1d3c§1 — bgcg1 + C]_aIla3C3Tl.

Substitutingp’; into ¢, = 0 (1.4), we obtain the homogeneous linear equatiop{pgs again,
and the coefficients of them vanish if

bici™ = A A1(cabytdibt +dsagtaiby )t
dyay ' = A Az(ardytbad,t +agdytead, 1.7)
cébé‘l = AaAg(dlan'agCgl + bzcz_ldgcgl)’l
whereA, is arbitrary. The origin ofA, technically isp, = A, - ¢;.
This A, is a kind of gauge. The origin of it is that &g = 0 we may changé, — A,¢,;
this givesA, — A,A,, Or equivalently
1> Agb) 5> Agd) C3 > AuCh. (1.8)
The analogous degree of freedom is lost in the MapW,, Wz — W, W;, Wj: the system
of the observables is not changed whgn— 1,¢;, i.e. when

C1 H— )\.hC]_ az — )\haz b3 = )»hb3 (19)

and the formulae fo#; do not change with (1.9). We call such invariance of the system
of the observablethe site projective invariancéorrespondingly, the site ambiguity of the
dynamical variables).
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The other obvious invariance (ambiguity)tie vertex projectivene. As a consequence
of simple re-scaling of the currents almost nothing changes if

ar> ai b bA C+> CA d— dA (1.10)

partially in all verticesW; andW' with six differentx; andA”..

Thus, in the most general interpretation, the niép W,, W3 — W;, W;, Wy is defined
up to projective ambiguity1, Ao, Az, Ay > A7, A, A%, Ag.

A very important feature of all these calculations is ths never tried to commute
anythind

We return to a general case of graph). 4Ny = 2n(n — 1) free invertible variables
ay, by, cy, dy, assigned to the verticdsof G,,, we regard as the generators of a b&d ).
For an open grapty,, one may consideB’(G,), the set of functions invariant with respect to
both vertex and closed site ambiguities. It is easy to see that the bdsig is formed by
4Ny — Ny — Ng = n? — 1 independent monomials.

Consider a little change dfi,,, so that only oneA in G, transforms intoy. Call the
resulting graptG,,. Let the vertices involved in this change be markediasW,, W5 for A
andW;, W5, W; for v, arranged as in figure 2. We introduce a functional operiterRy - 3
making the corresponding intertwining map 8n

R123 - @(Wi, Wo, Wa,...) - Ry 33 = (Wi, Wy, W}, ...) peB (1.11)

whereW; stands fofa;, b;, c;, d;} forever, and all other vertices excépt, W», W3 and their
variables remain untouched. This ambigueuse call thefundamental map

Now, let G, be an arbitrary graph equivalent &,. G, can be obtained fron&, by
different sequences of elementaty — v in general. Thus the corresponding different
sequences oR must coincide; this is the natural zero-curvature conditiond@gr— G,.
Partially, for the equivalence @4, the corresponding relation is the TE

R123+R145-R246°R356 =Rss6-R246 R145-R123. (1.12)

Due to the ambiguity oR, (1.8), (1.9), any zero-curvature condition is still an equation for
a set of A,th involved. Recall,B'(G,) was introduced previously as the gauge-invariant
subspace oB. R acts on8’ uniquely. The number of linearly independent current&pfis

N, — Ny = n — 1, so the linear system actually has 1 bounds fotN{ = 2n outer currents.
This corresponds tn — 1)(n + 1) = n? — 1 independent coefficients of the whole linear
system, i.e. the principal number of equations coincides with the dimension of the b&Sis of
Unfortunately, the basis @' is not local, and it is simpler to introduce an algebra constraint
removing the projective ambiguities than to consifieformally.

A way to remove\, ambiguity from the definition @&, (1.5), (1.7), is to impose some
additional conditions for the elements &f, a, b, c,d, such that (1.7) would become a
consequence of (1.5) and the additional conditions.

Complete classification of these additional conditions is still an open problem.

1.2. Local case: the Weyl algebra

Here we consider a speciakal case: suppose first that the elements of two diffeFénand
W; for given G, commute. Destroy also the vertex projective invariance choasirg 1 for
any j forever. Then (1.5) give the expressionsiigrbj, djc; *, dsbs ?, cf, c,. Suppose also

that any pair of the variables fromy are linearly independent, then

o the commutativity of the elements for differelit; from v gives (after some calculations)
bc = gcb with the same&-numberg for any vertex;
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Figure 3. Local parametrization of the vertex.

o these relations are conserved by the rRape.b’c’ = gc'b’;
e b~1c~!d also appear to be centres, depending on the vertex.

The gauge ambiguity becomes the ambiguity for these centres. We are looking for a kind
of quantum theoryp andc are already quantized, so we have to keep all centres invariant,
b *c;'d; = b 'cid’. This is possible, and further we will treat these centres as a kind of
spectral parameter.

We now change notations for the dynamical variables to more conventional ones, and
write down the resulting expressions for the niapNew notations for the site currents are
shown in figure 3.

Proposition 1. Let the vertex dynamical variables be given by

a=1 b =¢Y%u c=w d = kuw. (1.13)
Hereu, w obey the local Weyl algebra relation,
u-w =gw-u. (1.14)

u andw for different vertices commute, and numkeis the invariant of the vertex, i.&; ;,
assigned to the intersection of lineand j, is the same for all equivalent graphs.

Then the problem of the algebraic equivalence (i.e. equality of the outer currents) of two
graphs: G with the datag, u, w, and G’ with the datag’, u’, w’, can be solvedvithout any
ambiguitywith respect to alpy’, u’, w’, and the local Weyl algebra structure for the setofw’
is the consequence of the local Weyl algebra relations for the setvof

We write the fundamental simplex map far = v explicity. The mapR = Ry 23 :
W1, Wa, W3 > Wi, Wy, W3,

R-u;=u-R R-w; =w)-R j=1273 (1.15)
is given by
/ / -1 -1
wi =Wy Az up = A, - wy
wh = Azt wy u,=A7t Uz (1.16)
-1 -1
Wy =AU uz =uz- A
where
A = u;l - Uz — ql/zuI1 - W1+ K1Wq - uz_1
K1 _ _ K3 _ _ _1/2K1K3 _ _
A= —uytewgt+ =urtew,t — g Pt wyt (1.17)
K2 K2 K2

1

1 1/2u3-wgl+/<3w2_ .+ us.

A3:W1-Wg —dq
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Reverse formulae, giving=2, look similar:

_ K1 _ K3 - _
1_ / -1 1/2 / -1 =1 /
A7 = —up-uz " —qg7 —up- Wy "KWy - Up
K2 K2
-1__ . / / / -1/2 / /
A7 =uh-watul - wy — g koul - wy (1.18)
-1_ K3 ;-1 12K1 -1 ;-1
A" = —w; "Wz —g7 —uz "Wz t+KW, - Uz .
K2 k2

The conservation of the Weyl algebra structure
Uj-w; =qw;-u; > u;-w)=qw)-u} (1.19)
means thar is the canonical map, hen&g , 3 can be regarded as usual operator depending
onuyg, W1, Ua, Wo, Uz, Wz. The structure oR will be described in section 1.3.

Now the projective ambiguity is removed, and the current system game gives unique
correspondence between the elements of equivalent graphs. This is the exact meaning of
algebraic equivalence. Hence all the zero-curvature conditions (and surely the tetrahedron
relation) become trivial consequences of this unambiguity, and we get them gratis!

We mention now a couple of useful limits of our fundamental rRaps. The first one is
the limit whenk; = x, = k3 = «, and therk — 0. We denote such limiting procedure via

K1 =k =k3 <K 1 (1.20)

The corresponding map we den@%’z’s. The conditions fow are uniform for the whole
tetrahedron relation,

K1 =Ky=K3a=ks=ks =kg K1 (1.21)
soR”! obeys the TE. The other case is the limitRaf, 3 when

K1 K ko =k3 K 1. (1.22)
These conditions are uniform for TE again,

K1 K kp = k3 K kg4 = ks = kg < 1. (1.23)

We call the corresponding map, 3 and due to the uniformnity it also obeys the TE. Recall,
all these mapsR with k1 = k> = k3 = 1, R?! andr, were derived previously as a hierarchy of
R-operators solving the TE, see [21,22, 26, 29].

1.3. Structure oR

We now give a realization a® in terms of simpler functions. First, recall the definition and
properties of the quantum dilogarithm. Let, conventionally,

G =1=00=g0L=¢%)...(L—g" ). (1.24)
Then the quantum dilogarithm (by definition) [23, 24]

e o —1)" n2/2
v d @Y% =Y %x” (1.25)
n=0 > 1/n
and
e qn/2
y(x) = @ X", (1.26)
= (q; @n

This function is useful for the rational transformations of the Weyl algebra:
V@0 =A-¢"50"0 Y@ =A-¢ oy (127)
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hence
Yy w=w-L-¢?0 -y  yw) u=u-L-g 7w g w). (1.28)
Y is called the quantum dilogarithm due to the pentagon identity [23]

YW P (u) = Y(u) - Y=g~ 2uw) - gr(w). (1.29)
This corresponds to Roger’s five-term relation for the usual dilogarithm. From the other side
Y is the quantum exponent due to

vu) - (w) =y u+w). (1.30)

Recall, everywhere the Weyl algebra relation = gwu is implied.
We now introduce a generalized permutation function.A(®t y), x -y = ¢?y -x, defined
by the following relations:

P(gx,y) =y 'P(x,y) = P(x,y)y

P(X, qy) = P(x,y)x 1 = xP(x,y) (1.31)
and

POy =1 (1.32)
Forz obeying
xiz=glzexyez=glzy (1.33)

it follows that
PX,y)-z=gq"hz.x . y= . P(x,y). (1.34)

This function we call the generalized permutation because the usual permutation operator of
the tensor product is

P=Pu®uiwew?l). (1.35)

Considering independent, - u;l andw’; -wjfl, j = 1,2,3, one may see that they all
depend on three operatdysw ands:

U=w,' ws W =wj-ug* —q"?s.u-wt=u;-uyh (1.36)
UW = ¢gWU ands is the centre. One can directly verify that
K K -1
R=1v(U) - y(Wh.P ( [Z2u,s7t. w2> Sy (iw) P (Ut (1.37)
K2 k3

being substituted into (1.15), gives (1.16), (1.17). @andW , R acts as follows:
U.R-1_ -1 -1/2 —1/2_ -1

R-U-R o U - (W—gq +ix3U) - (W—g¢q s +K15-U)” (1.38)

R-W-Rl=s.w?l . (W-g¥2+k3U)-(W—g"? +K1$ u)~L

Whenk1 = kp = k3 = 1, expression (1.37) fa® coincides with the operator solution of
the TE from [21, 22]. This is the generalization of the finite-dimensionalR3Batrix from
¢" = 1to general, and the finite-dimensiona&-matrix corresponds to the Zamolodchikov—
Bazhanov—Baxter model.

We do not discuss this correspondence here: the reader may find the details concerning
the Zamolodchikov—Bazhanov—Baxter model in [1, 3, 4, 12], the details concerning the finite
R-matrix in [5], the details concerning the quantum dilogarithm in the original papers [23, 24],
and operator-valuer as the generalization of finit in [21, 22, 26, 27].

We now consider the significance of (1.37). #dlcan be decomposed into the series with
respect to their arguments. Substitute thR&ato the tetrahedron relation (1.12) and move all
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the generalized permutatio”rsout. P themselves obey the TE and so can be cancelled from
the TE forR. Then 12y are in the left-hand side of the TE, and 12 in the right-hand side. In
this case the TE becomes a relation resembling the braid group relation in 2D. This 24 term
relation can be provedirectly via the series decomposition of all 24 quantum dilogarithms.
The proof is based on seveffalite g-resummations (likg-binomial theorems). This is the
first value of the formula (1.37). The second one is that it gives a nice way to derive the finite-
dimensional complet&k-matrix (simply by replacing/ and P by their finite-dimensional
counterparts, [21,22, 24]).

It is important to mention the case faf| = 1. In this case the quantum dilogarithmic
functions should be replaced by Faddeev’s integral [25]. Briefly, it appears when one considers
the Jacoby imaginary transformation of an argument @indg:

u= eiz _ q1/2 — eir[@ — 0= eiz/9 _ 671/2 — e—in/O' (139)
Then
(q7%U; 9) oo
= 1.40
VW = @ e (1.40)
and the following expression fa¥ - (u) is valid in the limit of reald [25]:
1 [® et dg
= =exp- - 1.41
VrW)i=s@) p4 /oo sinhr& sinhzhg & ( )
where the singularity & = 0 is circled from above.
1.4. Hamiltonian structure ar
Returning now to map (1.37), the m&pconserves four independent operators:
W1+ Wo Us - U3 s (1.42)
and
H=wj:- ugl — ql/zul . ugl * W2 'ng — Klq_l/zul W1 - ugl . ugl + Kk3Uq ¢ ugl
—qu’l/zwl - Wo - ugl . wgl + KoWo - wgl
=W 1l+qU-— q1/2/<3UW_1) +s W+ iUt — ql/ZKZU_lW). (1.43)
Actually R depends only on two of thera,andH.
Consider the following product:
o =yaw™) - Y bu) - (=g 2cuw) - Y@'w) - Y (B'u. (1.44)
Let
x =aw t+a'w+bu+but— g V2cuw — g V2ab'u"tw L (1.45)
Itis easy to check - x = x - 0. Henceo as an operator is a function gn
/ / c
o=0o (aa bt | x) . (1.46)
I did not find an explicit form of functiom, only a special case af whenc = b’ = 0: then
Y (aw )y (bu)y (a'w) = ¥ (a6 )y (a'6) (1.47)

where

adt+a'0 =awt+bu+a'w. (1.48)
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Nevertheless, direct calculations giRé in terms of thes introduced. First, it is convenient
to rewriteR:

-1 1
R = Y (W L)y (—g2ksuw Hp (\/Eu le2> " (—ql/Z%ulw) v (’Ew) |
K2 K3 K3

(1.49)
Then
R2=N.D! (1.50)
where
N =YW HY (=g 2aUW DY (Ui (5T W)Y (=g 2ies U W) (1.51)
and
Ih:w(%w)w<—¢Q%§u4w>w<%§u4)w(%9N4>¢@q”%ﬁwN4y
(1.52)
Comparing these with the definition af we obtain
N=c (s‘l, Kok3S L, ﬂs | H) D=o (K—lzs @s, gs‘ll EsH) (1.53)
K3 K3 K3 K1 K3

whereH is given by (1.43).

2. Evolution system

In this section we apply operatérdefined in the previous section to construct an evolution
model explicitly. Due to the current system’s background we formulate this model in terms of
the regular lattice defined on the torus, its motion, its current system and so on.

The main result of our paper is the generating function for the integrals of motion for the
evolution. The derivation of the integrals is based on the auxiliary linear problem.

2.1. Kagong lattice on the torus

An example of a regular lattice which contains bathandy/-type triangles is the so-called
Kagone lattice. As was mentioned in the introduction, the Kagdattices appear in the
sections of the regular 3D cubic lattices made by inclined planes. Thus the édgtiice and

its evolution actually corresponds to the rectangular 3D lattice and thus is quite natural. The
Kagon® lattice consists of three sets of parallel lines: the usual situation is shown in figure 4.
The sites of the lattice are bothandy triangles, and hexagons.

For a given lattice introduce the labelling for the vertices; marktteangles by the point
notationP, and leta andb are the multiplicative shifts in the northern and eastern directions,
so that the elementary shift in the south-east directian 48 a~'». Nearest to triangleP
are trianglestP, bP, cP,a P, b~1P andc~1P. Some of them are shown in figure 4. The
multiplicative notations for the coordinates looks a little strange: we use them simply to make
our formulae shorter.

For three vertices surrounding thetype triangleP introduce the notatiofil, P), (2, P)
and(3, P). We use this notation for everything assigned to the vertices.

We define the Kagomlattice on the torus of siz&; formally this means the following
equivalence:

a"P ~pMp ~cMp ~ P, (2.1)
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\ \ Figure 4. The Kagong lattice.
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Figure 5. Geometrical representation of evolution.

Given the notion of the equivalence, we may consider the shifts of allinclined lines through
the rectangular vertices in the north-eastern direction as shown in figure 5. Itis easy to see that
figure 5 is equivalent to figure 2. The structure of the Kagdattice conserves by such shifts
being made simultaneously for all, but the marking of the vertices changes a little. This is
visible in figure 5.

We now give a pure algebraic definition of the evolution. The phase space of the system
is the set of 312 Weyl pairsu; p andw; p, j =1,2,3,P = a®bP Py, whereP, is some frame
of the reference’s distinguished point, and the toroidal boundary conditions mean

uj.aMP = Uj’bMp = Uj’p (22)
Wiagtp =W;jpup =W;p.
The phase space is quantized by the definition.ut.et, w’; , for fixed P be given by (1.16),
so that the magu; p, w; p} = {U p, W/ p} is given by the operator

R=][]Rer (2.3)
P

whereRp: acts trivially on the variables of any triangle # P’. Note, we suppose thaf p
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do not depend o,
Kj,p = Kj (24)

so that with respect te the translation invariance of the lattice is assumed. We define the
action of the evolution operatar as follows:

Ueupp-Ut=ul, U-wpp-Ut=u),
-1 ’ -1 ’

Usuzp U =Uy,1p U-wop-U"=w,, 1p (2.5)
-1 / -1 ’

U-uzp-U =Ug,-1p U-wzp-U =Wg3,-1p-

This identification means that-u; p - u-landu -w,,pU*1 are the variables which appear in
place ofu; p, w; p Of figure 5. We take the primary variabl@s; p, w; p} of the given lattice
as the initial data for the discrete time evolution,

ujp =u;p(0) wjp =w; p(0). (2.6)
The evolution fromt =ntot = n + 1 is simply
qup(i’l"‘l):U'Uj,p(I’l)'U_l Wj’p(lfl‘l'l):U'Wj’P(l’L)'U_l. (27)

Clearly, the map is the canonical map for the Weyl algebrae, sothiathe quantum evolution
operator. Henceforth we mainly consider the situatior¢fer 0 and the map from = 0 to

t = 1. We omit the time variable and writg instead off (0) and f* = U - f - U~! instead

of (1) for any objectf. Due to the homogeneity of evolution (2.7), (2.5) our considerations
appear to be valid for a situation with= n and the map from =ntor =n + 1.

2.2. Linear system

We now investigate the linear system for the Kagdattice on the torus.
Assign to the vertexj, P) of the primary ( = 0) Kagone lattice the internal currem; p.
The linear system is the set o#3 linear homogeneous equations far3internal currents

fip=Wip-drp+oop+q’Pusp-d3p =0

for =q"2u1p - 1 p +k2U2upWaap - P2.ap +Wapp - P3pp =0

fap = ra1p F KLY 1pW1p1 p = Prp1p FWo p - B2 p + g 2Up po1p - Popo1p
+h3 4-1p + k3u3 pW3 p - 3 p = 0.

Here we have introduced absolutely inessential notation simply in order to distinguish

these equationsf; p are assigned to the sites. Due to the homogeneity we may intpese
quasiperiodical boundary conditiorier ¢; p:

Gjavp = AQjp Gjpvp = Bojp. (2.9)

Itis useful to rewrite this system in matrix formt, = L - & = 0. First combinep; p with the
samej into the column vecto® ; with M? components, agb;)p = ¢; p. Introduce matrices
T, andT, as

(2.8)

(Ta - @j)p = Pjap (Ty - ®))p = ¢jvp. (2.10)
Due to (2.9)
M = A M = B. (2.11)

Combine furthew; » andw; p with the samej into diagonal matrices; andw; with the
same ordering oP as in the definition ofb,

u = diagPUj,p W; = diagPWj’p. (212)
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Figure 6. Co-currents on the lattice.

Obviously,
(Ty-uj T, Hp =ujp (Ty-u; - Ty Hp =ujpp (2.13)
and the same faw;.

Next combined;, ®;, 3 into 32 column®. Then from (2.8) the matrix can be
extracted in the & 3M? x M? block form:

W1 1 ql/2U3
L = ( ql/zul TaK2U2W2 TbW3 ) . (214)
T(;l + Tb_ll{]_U]_Wl wWo + Tb_lql/ZUZ Tail + K3U3W3

Recall, systent, - ® = 0 is 342 equations for 3/2 components ofb.
Introduce now co-currents. Systdin ® = 0 one may regard as the equations of motion
for the 2D system with the action
A=0*. L. (2.15)
The block form of the co-currents* is thus fixed from the form of., or from (2.8). Equations
of motion for ®* are F* = ®* - L = 0, and in component form
fip=0ip -Wipr+¢sp ~qurp + B3ap + 34p - K1ULPWL P
f3p=@ip+ 05 ap KUz pWop+ s p Wop+¢h,p g U (2.16)
fip = ¢I,P : ql/ZUS,P + ¢>2k,b*1P “Wgpt ¢§,aP + ‘P;,P * K3U3 pW3 p.
Here [/ corresponds tdj, P)th vertex. The assignment of the co-currents is shown in
figure 6.
Elements off* = ®* - L have the following remarkable feature: coefficientsfin,

belong to the algebra af; », w; p only. This means that the elements of any two columns of
L commute. Hence the object

det(L) =Y (=) [ [ Laww (2.17)
wherex € (j, P) ando are all the permutations, is well defined. One can prove the following
proposition.

Proposition 2. The admissibility condition for the linear homogeneous syskémL = 0 is

¢; p-det(L) =0 (2.18)

forall (j, P).

It is important that, due t& = A and7,¥ = B, det(L) is a Laurent polynomial with
respect to the quasimomemaand B.
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2.3. Evolution of the co-currents and integrals of motion

We now consider the shift of the inclined lines giving the evolution. The internal currents as
well as the co-currents change, and we can trace these changes.
Introduce two extra matrice# and M:

0 Ag 0

K= (o 0 TJ,,) (2.19)
1 Ks» O

where
Ao = q_1/2W1U51W51+9uI1W£1U3 (2.20)
K2
Ka»= T;qul/ZAz + AL+ T A, (2.21)
K2 K2

with A ; standing for the diagonal matrices with the entries given by (1.16) correspondingly,
and

0 uptuLT, g Y2 uy 7
M = | 2wy 'uz uiw) 0 Swytuy tuws T | (2.22)
W31 ngw/zTa 0
Apply the evolution operatav to L:
w) 1 ql/sz_lugT;,
L* = 6]1/2“3_ K2U2W2T W/3T/, . (2.23)

T+ T haquiwy TN wh + T, qY2u) T, T + T Hculwis T
Recall our convention to denoter = U - £ - U~L for any f. The following relation can be
verified directly:
K.-L*=L-M. (2.24)

M in general is the matrix makindeg; p = i p > Pjp andK makesqs;‘,P = ¢;"PU*1 =
“*p. Also K and M admit

K— K+L-N M+~ M+N.L* (2.25)
with arbitrary V. One can prove the following proposition.
Proposition 3. RelationK - det(L) = det(L) - K holds for all components dk.

Now we may give the heuristic derivation of the conservatiod@afL). Suppose we
solve the linear co-syste@m* - L = 0 at the time = 0. We then apply the evolution operator
to this system, thus we have to obtain the solution of the system

™. L* = (d*-K)-L* = 0. (2.26)

With respect tod* this map is a simple linear map, so the admissibility condition for the
evaluated homogeneous liner system must conserve. Thus due to propositions 2 and 3 we may
conclude that

det(U.-L-UY) =det(L)- D (2.27)

with some operatob. One may hope thab is not too complicated, and (2.27) is not trivial.
Careful analysis oK and M shows that thiD does not depend on the quasimometita

andB. In the functional limitz /2 — 41 one may easily calculate the determinant&oand

M; both are proportional ta* BM, and this term cancels from the determinants of the left-

and right-hand sides of (2.24). This is so in the quantum case also.
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HenceD in (2.27) is a ratio of anyA, B—monomials frondet (L) anddet (L*). Element
D can be extracted, say, from tié! B~ component of d&f):

D=]Jup []uisr (2.28)
P P
This means that we can introduce a simple operétor
D=d-d (2.29)
Choose directly
d=]]ur} (2.30)
P
Thus
J =det(L)-d (2.31)
is the invariant of the evolution, i.e.
u-J=J-u. (2.32)
Decomposé as a series of and B,
IJ= ) A“BPip (2.33)
o, Bell

wherea and g are integers and their domain (Newton’s polygdh)s defined byla| < M

|8l < M andja+B| < M. Quasimomentd andB are arbitrar-numbers, and the invariance
of J means the invariance of eaghg. On the other handj, is a functional of the dynamical
variables of the lattice, i.e.

Jap = Jap({ujp, Wjp}). (2.34)

Clearly, due to the homogeneity of the lattice these functionals are invariant with respect to
the lattice translations, and hence the conservatiangdies

Japujp,wip) =dpp({U-u;p-U ™ U-w;p-U1) (2.35)

i.e. functionalsl, g give the integrals of motion in usual sense.
d can be absorbed into det,

J =det(L?) (2.36)
where
ql/zuzlwl 1 q*%us
LO — 1 Tak2Uu2Wo Tyws . (2-37)
T_lq_l/z Tl T, 1q1/2K1W1 wo + T~ 1q1/2 Ta_l + K3U3ws

The total number of,, 4 is 342+ 3M + 1, and there arefd? + 1 independent, and of these one
can choose only &2 commutative, sd gives the complete set of integrals. The existence of
3M? Abelianintegrals is the hypothesis tested for snill

Allintegrals corresponding to the boundary of domB8irje| = M, |8| = M, |a+8| =
are equivalent to the foIIowingM elements:

l—[ W1 arbi Py W2, a”b/Po

= l_[ U2,ai*0 b0 poU3,ai*obo Py (2.38)

o

— . -1
J = 1_[ ul,afb”Powg.’ajha Py
o
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wherePy is some frame of reference’s point as previously. Nof@re notT,, T-invariant, but
restoring this invariance in any way (considering the symmetrical polynomials), one obtains
the invariants o). Betweerw;, u;, v; one may chooseM — 1 commutative elements. The
inner part off1 gives 342 — 3M + 1 highly complicated independent integrals, which gives

g = 3M? — 3M + 1 commutative (up to (2.38)) independent elements. Noiethe formal
genus of the curveé(A, B) = const.

2.4. Walks on the lattice and the integrals of motion

We now give a geometrical interpretation of the integrals of motion. This interpretation follows
directly from the analysis of the determinant. Every integral of motion is a sum of monomials
associated with walks on the lattice such that all the walks have the same homotopy class with
respect to the torus on which the Kagefattice is defined.

It is useful to formulate the walks in terms of genevattexvariablesa, b, ¢ andd as
in figure 1. Recall the shorter notatioh = {a, b, c, d} for the dynamical variables’ set.
Consider matrix in this general case. Each row Incorresponds to a vertex of the lattice,
and each column al. corresponds to a polygon (i.e. to a site) of the lattice. Tdwr$L)
consists on the monomials, each of them corresponds (up to a sign) to a product of different
W; p such that:

o for any vertex(j, P) only oneofa; p, b; p, c; p, d; p is taken in this monomial, and
o for any siteonly oneof surrounding, .. ., d is taken in this monomial.

Take the lattice and mark the places of the vertex variadles. , d, corresponding to the
monomial, by the arrows, ingoing to the corresponding vertices. Thus, for any site and for any
vertex we have only one arrow.

In order to get a purely invariant functional, we have to multigdy(L) by an integrating
monomial; in the general case this monomidlfis by ;a, »a3 . This choice of the integrating
multiplier corresponds to elemedigiven by (2.30). Itis easy to see that this monomial has the
same structure as described above. But due to the pedveve may interpret this monomial
geometrically as the set of outgoing arrows.

The system of the outgoing arrows is thus fixed, and shown in figure 7 for&dghe
triangle of the lattice. For the system of outgoing arrows and any system of ingoing arrows
the following is valid:

o for any site there exists exactly one outgoing arrow and exactly one ingoing arrow, and
they may touch the same vertex, and

o for any vertex there exists exactly one outgoing arrow and exactly one ingoing arrow, and
they may belong to the same site.

Hence there is a unique way to connect all the arrows inside each site so that a walk appears.
So, the walks we consider obey the following demands:

o the system of outlets of the walk is fixed and given by figure 7,
o the walk visits any site only once,

o the walk must visit all the sites and

o the walk must visit all the vertices.

For any walkwy let o (W) be the number of the components of the connectedness (i.e. the
number simply connected subwalks). Due to the choice of the outlets, figure 7, we have no
connected subwalks with zero homotopy class except the simplest ones: one-step subwalks
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Figure 7. Fixed outlets for the lattice walks.

that leave some vertex into the proper site and return to the same vertex immediately. We call
such subwalks trivial loops. They are to be taken into account in the countn@/v.

Now let walk W belong to a given homotopy classd + 8B of the torus, where cyclg
corresponds t@™ and cycleB corresponds t@}”, and denote such a walk 2%, 4.

To a given walk assign a monomial according to the following rules: let the walk pass
through vertex(j, P) so that the walk enters the vertex from the side W; p, and exits
the vertex from the sidg € W, ». Then the multiplier corresponding tg, P) is x - y 1.
The monomialyy, is the product of such multipliers corresponding to all the vertices. Thus
the reader may see that each monomial we construct gains the structure of an elefient of
described in section 1.1: monomig),,

Jy=...x-y rtox .yt ... (2.39)

x andy are assigned to a same vertexxsy ! does not contain the vertex projective ambiguity,
andy andx’ belong to a same site, g0 - x’ does not contain the site ambiguity. Finally, we
have to provide the projective invariancelg$ with respect to the start and end points of each
simply connected subwalk. In our case of the local Weyl algebrae this invariance is obvious,
because of elements y~! for different vertices commute.

Trivial loops, obviously, give nothing tdy,, because they corresponddex ! = 1.

With the structure of the walks introduced, the simple analysis of the determinant
immediately yields

Jap= Y (g, (2.40)
alWira,p

where the sum is taken over all the walks of the homotopy ¢léss o). A + 85 given and the
system of the outlets of the walks fixed.

2.5. Example: the Liouville system

As an elementary example of the application of our results consider the following reduced
evolution:

e First, consider the evolution system on a strip: in the toroidal conditiths= A and
TM = B the vertical and the horizontal sizes of the torus may not coincide. One may
guessT M = A andTbM" = B with differentM, andM,. Omitting the details concerning
least common multipliers etc, note that everything we have done is valid whea 1,
M, =M.

e Second, we deal with the limit; < k> = k3 < 1; this simplifies all the calculations
significantly. Note, a half of the dynamical variables become trivial in this case, and hence
a half of the integrals of motion have no interest.
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First we write down the action of the evolution operatofor R — r explicitly. On the
strip T, = A, and we use conventional notation for the geometrical coordinate

P =0b"Py+— k. (2.41)
The evolution is given by

_1 12, —1 -1
U-wyg-Ut=(1—gY Wy U3 k) * W1 kW2 kW3 j

U-Ugg - Uil = Ul,kWZ,kW:):/%
U-wyy - ul= way - (1— ql/zwli,%ue,,k)_l 242
-1_ . 12 -1 1— g2yt -1 (2.42)

U-uzgg U = (=g urxwyusg) - (1 — g7 wyjuzg)

U-wag- Ut =wp g

U-ugge-Ut=(1- ql/zwl_,li—lu&k—l) : (—ql/zuI,%—lwl,k—luz,k—l)-
We now change the variables, introducing the ‘observable’ apesdb;:

ap = Wii’ * U3k b, = —ql/zuii Uk - W2_11<- * W3 k+1 (243)
as well as the centres

Wy =W Wa . (2.44)
Nontrivial commutation relations are simply

bk cdr =qag - bk Ar+1 * bk = qbk © Af+1- (245)

The centres are the invariants of the evolutiony; = u; - U, and

g 172 12 \—1
1-— 1) +bp_1- Q-
ﬁkfl( q 7' a_1) +br_1- (1 —qg7' &) (2.46)

U-bk-U‘1=ak.

U-a-Ul=

Up to additional parameterg this map is nothing but the evolution, governed by the quantum
Liouville equation ‘on the dual lattice in the laboratory frame of the references’ according to
the terminology of [6,17].

To clarify this, we draw, as usual, the systepir), b, () on a 2D plane so that, for a fixed
time, a;, b, are associated with the vertices of the ‘horizontal’ staircase and the direction of
the timer +— ¢ + 1 corresponds to the elementary translation in the north-west direction, see
figure 8.

Obviously, with the time direction chosen, condition b, - U™! = a; is trivial. But
U-ay - U~ touches the whole square with three lower vertiges, by, a;, see figure 9, which
also shows the four vertices of this square conveniently denoted by the directions of a compass.

With these notations the relation between the vertices of the square can be expressed as

Lo g = Yy s, (2.47)
UNE Uws
This is the well known Liouville relation on the dual lattice up to parameiers

In this case a ‘good’ matrix© of the coefficients of the linear problem (2.37) can be
obtained with the simple limit; = 0 and7, = A. Now the determinant may be calculated
combinatorially. The number of the dynamical varialdeb is 2M, so as a result we expect
the existence oM integrals of motion.

We introduce auxiliary notations: far< m < k + M let

m+1l

Fiotm+1= Y @%...8-1+by...by —q¥?Y & .. 8, 1-8, by -bos1...b,.  (2.48)
o=k o=k
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Figure 9. Elementary squaréjoa=a’,Uob =b’.

Some ofFy_1 ,+1 for smallm — k are given by
1/2

Frpsr =1 Fro1ks1 = a + by — g™ %ay - by.
Further,
F = +ay by + by - bag — g2 b1 — gY%ay - by -+ b

k—1k+2 = Qg * Q+1 ¥ Ak * D1 T 0p » D+l — 777k » Q1 * D+l — 777k » D = Dps1
and so on. In general, dflare defined by the recursion relations
1/2

Fk—l,m+1 = Ak+1-- -y - (1 —q / bm) + Fk—l,m * bm

or, equivalently,

1/2

Frcimrr = (1 —qg7“a) - bgbg+1... by +ag - Fi e

The integralsy - Z; = Z; - U, are given by

Iy = l_[ak + ku
k k
Ina= Zﬁka,HM

X
Iy—o2= E UiFp mUmF o jrm
k<m<k+M

IM—B - E ﬁka,mﬁm I:m,nﬁn I:n,k+M

k<m<n<k+M

and so on, where in all sums tlfg,-cyclicity is implied.
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(2.49)

(2.50)

(2.51)

(2.52)

(2.53)
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The integrals in the list (2.53) with small indices are remarkably simple, for example

= <Hﬁa) ' (Zﬁk_l(ak —q"%ay by + bk)>. (2.54)
o 3

The conservation of all these integrals may be proven directly.

The combinatorial origin off; is the following: the local contributions to itg;th
component (in our notatiors;_; x+1) are given by three different diagrams of the homotopy
classA in the graphical representation. These diagrams are simple, because of homotopy
class is small and the possible diagrams consist mostly of trivial loops. We call these three
nontrivial diagrams ‘a particle’. The next integrdly,_», has the general position —a host
of cases when the particles are situated in remote places on the thin torus (the rest are trivial
loops). The corresponding contributionZg _» is ﬁ,lek,l,kﬂ . ﬁ;lFm,Lmﬂ, m > k. Inthe
cases when two particles become closed, the counting of the nontrivial diagrams changes, so
that they form a two-particle clust€f_; 1+, formed by five nontrivial diagrams only (instead
of nine diagrams in the general case). Finally, we consider-particle cluster, for which
the recursion relations may be easily derived. Thus, we obtain the complete set of integrals in
terms ofn-particle clusters (2.53).

3. Discussion

We conclude this paper with an overview of the problems to be solved and the aims to be
reached. The approach proposed suggests a way to their solution.

First, we mention the problems of the classification of the map

R:{aj,bj,cj,d_,-}r—> {a/],b’l,c/],d/]} ]=1,2,3 (31)
in general. The aim is to classify all conserving symplectic structures of the®odie have
discussed only the local case, when the variables, assigned to different vertices, commute and
the scalars (spectral parameters) are conserved. We suspect that such a case is not unique,
and that there could be other ways to remove the projective ambiguity. The simplest case to
be investigated would be to consider all the varialags, c, d for each vertex as matrices
with, for example, non-commutative entries, but with these entries commutative for any two
vertices. The matrix structure may be common for all vertices, and thus we would have no
commutation between different vertices in general. Another simple possibility is another kind
of locality: the case when the dynamical variables commute but do not belong to a same site.
This would correspond to the duality between the vertex and the site projective invariance.
Note, once our locality is imposed, the Weyl structure appears immediately. Thus the Weyl
algebra is the consequence of the locality technically, but the principal origin of the Weyl
algebra is mysterious.

A purely technical problem to be mentioned is the investigation of thgpergeometrical
function o, equations (1.44), (1.46). More generally, the main future aim with regard to
evolution models as the calculation of tifematrix, S = U?M, as well defined algebraical
functions of its integrals.

The main problems for immediate investigation are connected with the integrals of
J(A, B) does not seem to be constructive. The aim is at least to calculate the spectrum of
The combinatorial approach does not appear fruitful for the genéralM torus. A possible
approach would be via functional equations for the integrals of motion, which should follow
from the determinant or topological representatiord ofAnother possibility is that a way
resembling the Bethe ansatz in 2D might exist in 3D, i.e. a way of a triangulatiomaith a
help of some artificial operators. If such a way exists, it must be based on the linear problem
derived.
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